澳门威尼斯人美女-澳门威尼斯人赌场音乐-威尼斯人娱乐场官网h00 (中国)·官方网站

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐官网丽| 百家乐官网稳赢技法| 大发888是什么游戏| 唐海县| 小孟百家乐官网的玩法技巧和规则 | 真人百家乐官网破解软件下载| 打百家乐官网纯打庄的方法| 百家乐现金投注信誉平台| 大发888下载并安装| 德州扑克单机版| 澳门百家乐官网路子分析| 电投百家乐网站| 世界德州扑克大赛| 百家乐怎么玩啊| 顶级赌场| 香港百家乐官网赌场娱乐网规则| 大发888非法吗| 百家乐长龙有几个| a8娱乐城线上娱乐| 百家乐官网赌缆十三式| 百家乐官网最新投注法| 玩百家乐怎么能赢吗| k7百家乐官网最小投注| 大发888注册送| 百家乐烫金筹码| 欢乐谷娱乐城信誉| 百家乐送彩金网络| 百家乐官网真人百家乐官网赌博| 大发888被查| 百家乐ag厅投注限额| 沈阳市| 全讯网备用| 百家乐官网赌博赌博平台| 夜总会百家乐的玩法技巧和规则 | 免费百家乐追号软件| 玩百家乐官网新澳门娱乐城| 博之道百家乐的玩法技巧和规则 | 金宝博娱乐场| 百家乐官网休闲游戏| 定做百家乐桌子| 大西洋百家乐官网的玩法技巧和规则 |